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SUMMARY 
A new boundary element method is described for calculation of the steady incompressible laminar flows. 
The method is based on the well-known SIMPLE algorithm. The new boundary element method allows one 
to find the fields of the pressure and velocity corrections without inner iterations, thus reducing the 
computational time drastically. This makes it different from the method developed by Patankar and 
S~alding.~’ However, the new method demands a much larger computer storage. The boundary integral 
equations are discretized with the help of constant boundary elements and constant cells. The values of the 
integrals along the boundary elements and the cells for the two-dimensional domain are found analytically. 
To preserve the stability in the iteration process, under-relaxation for the convection terms is used. This 
paper gives the results of calculations of the flows between two plane parallel plates at Re = 20 and Re = 200, 
the flows in a square cavity with a moving upper lid at Re= 1 and Re= 100 and the flow in a plane channel 
with sudden symmetric expansion at Re = 46.6. 

KEY WORDS Boundary integral equation Boundary element method SIMPLE algorithm Two-dimensional laminar 
flow 

INTRODUCTION 

There has been a growing interest in the applications of the boundary element method (BEM) to 
the numerical solution of the fluid flow problems. Although for the problems of solid mechanics 
the boundary element method’-4 is well developed and shows advantages in comparison with the 
Finite Difference Methods (FDM) and Finite Element Methods (FEM), there are no known 
applications of BEM to the fluid flow problems which show the same advantages. Moreover, the 
known boundary element method not only surpasses FDM and FEM in effectiveness but also 
yields them5-23 sometimes. 

Now there exist rather universal computer programs which are based on FDM and FEM such 
as TEACH,24 FIDAP,” etc. However, there are no universal algorithms and programs based on 
BEM which are capable of solving both laminar and turbulent flow problems. It seems that they 
will appear in the near future. Potentially, they must overcome the same programs based on 
FDM and FEM. 

The papers of Wu and Wahbah’ and Wu and Thomson6 may be considered to be the 
beginning of the application of the boundary integral equations method to the solution of the 
problem of viscous incompressible fluid flow. Green’s theorem for vectors has given these authors 
the opportunity to obtain Boundary Integral Equation (BIE), which permits one to determine the 
velocity field with the help of the vorticity field. Although this approach, which uses the equation 
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of the vorticity transport, allowed one to eliminate the consideration of the pressure, serious 
difficulties appeared in determining just the vorticity field itself, which is mainly connected with 
the formulation of the boundary conditions for the vortex. A reasonable compromise seems to be 
found by the authors in solving the vortex equation by FDM and formulating the boundary 
conditions using Taylor series expansion. Correspondingly, the difficulties in the implementation 
of this ‘hybrid’ method are the same as those in the implementation of FDM. Further develop- 
ment of this method brought the authors to the ‘zonal-hybrid’ procedure,26* 27 permitting them to 
eliminate the non-viscous domain from the consideration and, thus, to make the calculations 
effectivity essentially higher. 

The impossibility of obtaining BIE from the vorticity transport equation using Green’s 
theorem for the vectors has forced the development of BEM for the variables velocity, vorticity 
and p r e s ~ u r e . ~ - ’ ~  This method was successfully used for laminar incompressible flow calcu- 
l a t i o n ~ ’ - ~ ~  and, recently, was modified for turbulent flow calculations.28 The problems of the 
correct formuiation of the boundary conditions for vortex and the application of this method for 
compressible flows seem to be the main difficulties in the application of this method. 

Utilization of the governing equations which have been written with respect to the variables 
stream function and vorticity allows one to create the methods for two-dimensional flows in 
which the pressure has not been c o n ~ i d e r e d . ’ ~ ~ ’ ~ , ~ ~ , ~ ~  B ut the possibility of the application of 
these approaches to three-dimensional flows faces difficulties in obtaining the three-dimensional 
fluid flow equations in the variables stream function and vorticity. 

The most prospective way is to formulate universal methods of calculating the flows on the 
basis of BEM, using the equations in the natural variables, velocity and pressure. Here the main 
difficulty is to determine the pressure. So, for the beginning it may be useful to utilize the ideas of 
determining the pressure which were used earlier both for FDM and FEM. 

The penalty method for BEM has been used widely and successfully by Kitagawa et a1.’6-18 
and Kitagawa.” They used it for calculating the two-dimensional flows with natural and forced 
convection. It also seems possible to generalize this method for more complicated flows. 

The advantages of BEM in comparison with other methods could be seen in the solution of 
Stokes’ problem,29, 30 when the inertia forces are negligible in comparison with the viscous forces. 
In this case the linear problem with the use of the special fundamental solutions has been 
converted to the system of BIEs only for the boundary values.31 The discretization of the BIE by 
boundary elements gives a system of linear algebraic equations which can be solved by the Gauss 
elimination method. The utilization of the BEM technique for Stokes’ problem allows one to 
decrease the dimension of the problem on the whole, essentially decreasing the necessary 
computer storage and the time of program implementation; it also allows one to solve the 
problem without iterations. 

However, the non-linearity of the Navier- Stokes equations practically does not permit one to 
realize the potential advantages of BEM. Thus, all known methods for solving the Navier-Stokes 
equations based on BEM yield to the best successful FEM in effectivity. 

This paper investigates the BEM formulation of the well-known SIMPLE method which was 
developed by Patankar and S ~ a l d i n g . ~ ’ - ~ ~  The method was tested for the calculation of steady 
two-dimensional laminar fluid flows such as: (a) the flow between two plane parallel plates; (b) the 
flow in a square cavity with a moving upper lid; (c) the flow in a plane channel with sudden 
symmetric expansion. The results of the calculations are in agreement with the data obtained by 
other authors. 

This method could be easily applied for calculating three-dimensional, turbulent and unsteady 
flows. Moreover, the method allows one to solve problems for domains of complex configuration 
without extra difficulties. 



THE SIMPLE METHOD 55 1 

Unfortunately, here the BIEs are non-linear; so, they were solved by iteration method using 
under-relaxation. 

Our method is applicable to both two-dimensional and three-dimensional steady laminar 
incompressible flows. Although the paper considers only two-dimensional domains, the method 
could be easily modified to three-dimensional domains. 

GOVERNING EQUATIONS 

The system of the equations for steady laminar incompressible flow for the dimensionless 
variables in domain R has the following tensor form: 

aui 
axi 
-=O, 

aui ap a 2 u i  

J a x j  axi axjaxj’ u.-=- -+v- 

On the part rl of the border r, the values of the derivatives with respect to outward normal to 
the border, Wi= aui/an, are given and on the remaining part Tz,  the exact values of the velocities 
ui are given. 

Green’s theorem allows one to obtain the boundary integral equation from (2): 

g ) d r ( x ) + i j  (*+uj+)u*(x, axi axj g)dn(.)=Ir $u*(x, g)dr(x), (3) 

where u* is a fundamental solution of the Laplace e q ~ a t i o n . ~  The velocity derivatives are 
obtained by differentiation of BIE (3) with respect to tf co-ordinates (for 4 $ r): 

where q* =&*/an. 
A supplementary equation for determining the pressure can be obtained by reasoning as 

follows. Assume that we have approximate fields of velocity ulo) and pressure p“). In the general 
case, the velocity field u!’) does not satisfy the continuity equation (1). The problem is to find such 
a field of pressure p which gives the velocity field from the equation (3), satisfying equation (1). 
Assume that q’, p’ are such ‘supplements’ of the velocity and the pressure, respectively; then the 
relations 

are valid. 
ui = u p  + u;, p = p(0) + pl (5 )  

We consider all velocity changes to be caused only by the pressure gradient: 

au: apt 
a t  axi’ 
_- 

Integrating (6) with respect to the time variable, we obtain 

where I =  At is the time step and ut=O at to=O. As the velocity field ui must satisfy the continuity 
equation (1)’ then taking into account (5 )  and (7), we will obtain Poisson’s equation for the 
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Dressure correction 

An investigation of (8) shows that if, on the part rp of the border r, p ’ = O ,  and, on the part Tf, 
a p ’ p  = 0, then for the divergent velocity field 

the pressure correction is zero on the whole domain il. 
Green’s theorem allows one to obtain BIE for the pressure correction from equation (8): 

Taking into account (7) we rewrite the derivative of pressure correction with respect to the 
outward normal to the border in the form 

where f’=u;ni is the velocity correction orthogonal to the border. Finally, the BIE (9) takes the 
following form: 

Differentiating (1 1) with respect to the & co-ordinate and taking into account (7), we will obtain 
BIE for the velocity corrections calculation: 

BIE discretization by constant boundary elements and cells 

We will divide the boundary r of domain Ci into Nb constant boundary elements (BE) with the 
nodes at the centres of BE, and the domain R into N ,  constant cells with the nodes at cells’ 
geometric centres. The discretization of BIE (3) when the observation point is situated at the 
centre of BE (m= 1,2, . . . , Nb) gives 

In equation ( 1  3) the coefficient c,=O5 for all constant BE. The following designation is accepted 
for integrals according to j BEs and k cells: 

r r 
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The discrete BIE (13) could be rewritten in the canonical form for every space co-ordinate 
i =  1,2, 3: 

where x is the vector of the unknown values. The system of Nb linear algebraic equations for every 
space co-ordinate has been solved by the Gauss elimination method. 

Placing the observation points at the cells’ geometric centres ( k =  1,2, . . . , N,) ,  one may 
discretize BIE for the internal nodes velocity calculation m =  1,2, . . . , N ,  at cm= 1: 

Ax = b, (16) 

1 Nc N h  N b  

u$=-  C uijHYm+ C wij~jR,-- 1 (K$+P:)D&, 
j =  1 j =  1 k = l  

where the following notations are used for {ER: 

In the above-mentioned notations, the upper index R denotes that the variable is related to the 

The discretization of equation (4) allows one to calculate the velocity derivatives in explicit 
cell. 

form by the space co-ordinates 1 = 1,2,3: 

where the notations for the surface 

and for the volume integrals 

are used. 

following form, respectively: 
Discrete BIE for calculating the pressure corrections in boundary and internal nodes have the 

where the velocity divergence is denoted by 

As the system (22) of BIEs for m =  1,2, . . . , Nb may be rewritten in canonical form (16) and 
may then be solved by the Gauss elimination method from BIE (23), the values of pressure 
corrections may be calculated in explicit form at all internal nodes m =  1,2, . . . , N , .  
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The discretization of BIE (12) allows one to obtain also the formula for calculating the velocity 
corrections at internal nodes m =  1,2, . . . , N ,  in an explicit form: 

For the determination of proper pressure and velocity corrections, it is necesary to establish 
correct boundary conditions for p‘ andf’. So, on the rp part of the full boundary r, condition 
p’=O is specified and, on the other part T,,f’=O. Usually, the boundary Tf is the part where the 
value of mass flow (the wall, for example) is specified: 

f= ui ni = const, (26) 

and the remaining part of the boundary is rp as usual. 
Analysing formulae (14), ( I  5), (18), (20) and (21), one can see that surface and volume integrals 

do not contain velocity and pressure variables, and depend only on the geometric characteristics 
of the calculating domain. So, using the non-staggered grid, they could be calculated only once 
and thereafter kept unchanged during further calculations. In the general case, all matrix elements 
are non-zero and, so, they need much computer storage. The formulae for integral calculations 
along the boundary elements and the cells for two-dimensional problems are given in Appendix. 
They may be easily generalized for three-dimensional regions. 

SOLUTION PROCEDURE 

After discretization of the calculation domain into the boundary elements and volumetrical cells, 
it is possible to calculate the coefficient matrices for discrete BIEs. For every BE we determine 
whether it belongs to rl or Tz, and to r, or rp; correspondingly, the boundary conditions are 
determined for Wij or uij, andf’ or p’. By analogy we will specify the initial values Pz and K z  for 
every cell, usually equal to zero. 

Further, the calculations are carried out in the following order: 

1. 

2. 

3. 

4. 

5. 

6.  

The unknown boundary values of the velocities uim and their derivatives with respect to the 
outward normal Wi, are found from (13). 
The values of the velocities U: are calculated in an explicit form from (17). And the values of 
their derivatives (dui/i?(l)fit at all internal nodes are calculated from (19). 
Taking into account that the velocities and their derivatives found above are approximate, 
the divergence S!,? values are found at internal nodes m =  1,2, . . . , N , .  
The unknown values of the corrections p a  andf’, at boundary nodes m =  1,2, . . . , Nb are 
calculated using equation (22). 
The pressure and velocity corrections are calculated from (23) and (25) at all internal nodes 
m = 1 , 2 , .  . . , N , .  
The velocity and pressure corrections at all internal nodes take the form 

uim n - - uim ‘O’”+u!n pfit = p:)“ + pa*,”, m = 1,2, . . . , N , ,  

and at  boundary nodes of the domain, the form 

U i , = U ~ ~ ) + U ~ , , , ,  p m = p g ) + p a ,  m = 1 , 2 , .  . . , Nb. 

Then the convection terms are calculated from the velocities and their derivatives from (1 5). 
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To calculate the pressure derivatives of internal nodes, the relation 

(27) 
u;f p" - pP'" - - 
A &k- ik 

obtained from ( 5 )  and (7) is used. 
It must be mentioned that the velocity correction at a boundary node is not necessary as 

the correction of velocity in a limiting case tends to zero. It is important because their 
components cannot be determined from the correctionf' for BE which are not orthogonal 
to any of the co-ordinate axes. 

7. We check the convergence. If the convergence is not achieved, we return to step 1. 

The convergence of the solution was controlled by the maximum value of the increment at all 
nodal points of the calculation domain: 

where q is the iteration number and the velocities values are taken after their correction. The 
convergence criterion for the main calculations was 6 ,  for u1 component and 
d 2 = 3 x  for u2 .  

Preliminary calculations have displayed that such a cycle may turn unstable and, SO, it is 
necessary to use under-relaxation for the convection terms 

I(u?n)q-(d3)q-11<4, 

K? = E(K:) ,  - (a - IMK:), -, . (28) 

The initial value of the relaxation coefficient is recommended to be set equal to v (for v < I); then 
with every iteration it may grow with the Coefficient to 1.01-1-02 in a geometric progression. 
Moreover, the initial value of the coefficient I in the pressure and velocity correction algorithm 
one may assume to be equal to l /v ,  which then decays with every iteration in a geometric 
progression with the coefficient to 0.98-0.99. In this case the calculations show stability and 
convergence. In the general case, ,? value of the coefficient does not influence the final result. 

We will give now several useful ideas for implementation of computer programs. First of all, 
one must check the mass Aow conservation on the border of the calculation domain. In the limit 
case the velocity divergence tends to zero; so, the discretization of the relation 

allows one to control the mass flow conservation on the whole border: 
Nb 

1 (ulrnnlm + U Z m n , m ) L n = Q *  
m = l  

In (29), L, is the length of the mth BE. 

velocity corrections. As the equality 
The second suggestion is to check the perfectness of the algorithm by checking the pressure and 

must be valid, for divergent velocity field the identity 

must also be valid correspondingly, where A ,  is the area of k cells. 
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The third suggestion is to compare the velocity derivatives evaluated from equation (19) with 
the ones obtained in any other way (for instance, by the approximation using the method of least 
squares for the regular domains) from the discretized BIE (17). The velocity corrections which 
were obtained from BIE (25) may be analogously compared with the ones obtained from (7), 
where the pressure derivatives were determined by an alternative differencing (usually, velocity 
derivatives) of the pressure corrections from (23).  

It must be mentioned that the inner cycle in the standard SIMPLE algorithm based on the 
control volume method is not necessary in our algorithm. So, the time of the calculations may be 
essentially decreased. 

VORTICITY AND STREAM FUNCTION CALCULATIONS 

After velocity and pressure fields are found, one can determine the vorticity 

au2 au, 
ax, ax2' 

w=--- 

and the stream function Y for the two-dimensional flow. Taking into account 

aul ay 
ax2 ax1 

u1=--, u 2 = - - ,  

we will obtain Poisson's equation for the stream function from (30): 

w. 
a z y  

axjaxj 
-=- 

Using the Green's theorem in equation (32), we obtain BIE 

which is discretized to the form 
N b  

0.5Ym+ 1 YjHjm= 
j =  1 

for boundary nodes (m= 1,2, . . . , Nb) and 

(34) 

for internal nodes (m= 1,2, . . . , N c ) .  
The algorithm for determining ID and Y is easy and permits one to find them without iterations: 

1. The vorticity at internal nodes is found from the known velocity derivatives from (30). 
2. The unknown values of the stream functions Y m  and their derivatives with respect to the 

outward normal to the border (dY/an), are found by the Gauss elimination method from 
equation (34) rewritten to a canonical form. 

3. The stream function values at all internal nodes of the domain Q are determined from (35) in 
explicit form. 
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Although the algorithm of determining the values of '€',a has the auxiliary meaning, the 
calculation of the vorticity and stream function is an important step in the analysis of the results 
of problem's numerical solution. 

RESULTS 

Flow in the inlet section of the parallel plates 

Reynolds numbers Re = 2/v: 20 and 200 and was compared with the known  result^.^$-^^ 

conditions for this problem have the following form: 

The steady incompressible viscous flow was calculated by the above algorithm for two 

As the floy is symmetrical, only half of the channel height was considered. The boundary 

on the wall the no-slip conditions are specijied 

u 1 = u 2 = o ,  Y=O, f=O; 

on the channel axis of symmetry 

dul /an=o,  uZ=O, Y=l ,  f ' = O ;  

on the channel entrance 

u 1 = l ,  u2=0, Y=xz, f=O; 

rather far away from the channel entrance (outJow conditions) 

au , /an=au, /an=o,  ay/an=o, pi=o. 

The outflow boundary was situated at x1 = 3 and x1 = 8 for Reynolds numbers of 20 and 200, 
respectively. If for Re = 20 such remoteness was enough, in the case with Re= 200 the length of the 
channel was not enough for the formation of the fully developed flow. 

The calculation domain for Re=20 was discretized into 60 boundary elements and 450 
triangular cells on the uniform mesh. For Re = 200 it was discretized for the mesh with exponen- 
tial thickness along the x1 axis and was divided into 60 BEs and 400 cells. The personal computer 
PC/AT 286 was used; so, it was impossible to use a finer mesh. It must be mentioned that, during 
the numerical implementation of this method, the arrays D f , ,  g,,, which have iV: and 2N: 
elements, respectively, took the main computer storage. 

The usual convergence process is displayed in Figure 1 .  The values of root-mean-square 
residuals 

for velocity ui decay quickly during the first 1&15 iterations, but then their decay becomes slow. 
The convergence of the solution procedure (6, = required 127 iterations at 
Re = 20 and 236 iterations at Re = 200. 

In Figure 2 the change of the mass flow during the iterations before correction Q1 and after 
correction Qz according to the SIMPLE algorithm on the boundary of the calculation domain for 
Re=200 is shown. Q1 decays fast during the first 15 iterations and then changes slowly near zero. 
For Q 2  the SIMPLE algorithm yields a decay of 8-10 times the discrepancy of the mass flow on 
the boundary; so, the mass flow Qz is practically always equal to zero. 

d2 = 3 x 
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Figure 1. The iteration process convergence of the method for inlet flow between two parallel plates problem at Re= 20 
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Figure 2. The mass flow changes during the iterations before and after correction 

The development of profiles for the longitudinal component of velocity is shown in Figure 3. It 
must be mentioned that there are convexities in the velocity profiles at the inlet section of their 
development, both for Re = 20 (Figure 3(a)) and for Re = 200 (Figure 3(b)). The same situation 
was mentioned in References 3 W .  This development of velocity profiles with negative-gradient 
zones (dul /ax2 < 0) was found only under ‘hard’ inflow boundary conditions, but under ‘soft’ 
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Figure 3. The development of the velocity profiles in the inlet section of channel (a) Re=20; (b) Re=200  

inflow boundary conditions (du,/dn = 0) the negative-gradient zones were absent. The results 
obtained earlier in References 35 and 36 testify to this as well. 

On the outflow boundary the velocity profiles coincided rather closely with the distribution 

U1= 1 .5~2(2 -X2)  

only for Re = 20, but for Re = 200 there was a small deviation from the theoretical results because 
of a too small length of the inlet section (Figure 4). 

Figure 5 shows the changes of the velocity's longitudinal component on the channel axis of 
symmetry. The results obtained by this method were compared with the known data.37' 40 It must 
be mentioned that the results agree well for Re = 20 though for BEM the coarse mesh was used. 
A bit worse is the agreement with the results of Morihara and Cheng4' and Gillis and Brandt37 
for Re = 200. It is mostly seen approaching the calculation domain outlet. Here the length of the 
calculation domain was also noticed as being not enough. 
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Figure 4. The comparison of the velocity profile at the outlet section of the channel (points) wi ... the developed velocity 
profile (line) 
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Figure 5. The development of the streamwise velocities on the channel centreline 

The streamlines for Re= 20 and Re=200 in Figure 6 have much in common in quality. They 
curve essentially only on the inflow domain and then become smooth rather quickly. Analog- 
ously, the pressure changes essentially along the co-ordinate x2 only on the inlet section of the 
flow (Figure 7); then the derivatives 8p/ax2 become too small in comparison with 8 p / d x l .  On the 
channel wall the pressure drop becomes stable a bit earlier (Figure 8) than on the axis of 
symmetry. The analysis of the data in Figures 8 and 9 for Re= 20 supports the known fact that the 
pressure drop becomes stable earlier (xI = 0.75) than the friction coefficient (xl = 1.1). The product 
cf Re in this case corresponds to the value of vorticity on the wall ow, which is -3 for the steady 
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Figure 6. The streamlines for the flow between two parallel plates: (a) Re=20; (b) Re=200 

flow. The lines of constant vorticity (Figure 10) are practically analogous to the data obtained by 
Morihara and Cheng4' 

Theflow in a square cavity with driven upper lid 

Although the calculations of the flow in the inlet section of the parallel plates show the stability 
and the convergence of the method, the absence of recircutating flows in these domains does not 
allow one to answer the question whether this scheme is stable or not. One of the types of flows 
which often serves as means for checking up numerical schemes is the circulating flow in a square 
cavity with a driven upper wall. Such a flow was calculated by BEM technique under the 
following boundary conditions: 

on thefixed lef, right and bottom walls 
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Figure 7. The pressure contours: (a) Re= 203 (b) Re = 200 

on the translationally driven upper wall 

u 1 = l ,  uz=o, f = O ,  Y=O. 

The calculations were made for two Reynolds numbers Re= l / v  1 and 100. In the first case 
a rather coarse mesh was used with 28 boundary elements and 98 equal triangular cells, and for 
Re= 100 a finer mesh with 60 BEs and 450 equal triangular cells was used. 

One of the peculiarities in calculating the flow in square cavity is the jump of velocity values u1 
in the cavity's left and right upper corners. The jump of this kind is not a physical one and may 
introduce some uncertainty in determining the boundary conditions, especially in FDM and 
FEM. Difficulties may arise while using linear and quadratic continuous BEs as well. The use of 
constant BEs permits one to overcome such uncertainty in the boundary conditions easily. 

Another peculiarity of the numerical calculations of flow in a square cavity is the uncertainty in 
defining the field of pressure, which can be found only in a relative form. The absence of the part 
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Figure 8. The pressure drop along the channel length for Re = 20 
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Figure 9. The friction coefficient development along the channel length 

of boundary rp does not permit one to find the absolute values of the pressure corrections p’ and, 
consequently, the absolute pressure value p .  Thus, the calculations were made at two different 
approaches to boundary conditions for p’ andf’. In the first case, we tookx=O for all BEs and 
the values of p h  were found while solving the BIE (22). Then the relative pressure values at all 
nodes of calculation domain were determined as the difference between the calculated (absolute) 
pressures and the pressures at the centre of the lower wall. In the second case x1 = 0 5 ,  x2 = O  for 
the boundary node under the condition p’=O;  &=O-for all other boundary nodes. In this 
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Figure 10. The vorticity contours: (a) Re= 20; (b) Re=200 

singular node, the velocity correction was not carried out naturally. This method has permitted us 
to obtain the absolute pressure values. Comparing the analysis of the solution results, obtained in 
two different ways, it became clear that both velocity fields and pressure fields were greatly alike. 

Figures ll(a) and ll(b) show the calculated vector velocity fields at Re= 1 and Re= 100, 
respectively. The lines of the constant stream functions at R e =  1 in Figure 12(a) are entirely 
analogous to the data of Sivaloganathan and S h a ~ . ~ l  The vorticity centre is situated on the 
vertical symmetry axis of the cavity. With the growth of the Reynolds number, let the primary 
vortex move from the symmetry axis in the direction of the trajectory of the upper wall (Figure 
12(b)). Although the streamlines’ pattern coincides qualitatively with the data of BurgraP2 and 
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Figure 11. The vector velocity field for the flow in square driven cavity: (a) Re = 1; (b) Re = 100 
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Figure 12. The streamlines for the flow in a square driven cavity: (a) Re=l;  (b) Re= 100 

the minimum stream function value is 9-10% higher than that obtained by other 
authors.42, 44-47 S ome value of Y overstating in the vortex centre is caused by understating the 
values of the velocities u1 at O<x2<O-5, taken along the vertical through the vortex centre 
(Figure 13). 

The lines of constant vorticity (Figure 14(a)) and constant pressure (Figure 15(a)) at  Re= 1 are 
nearly fully symmetrical. These results correspond well with the known data.41 The vorticity field 
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Figure 13. The vertical velocity profile along the vortex centre for the flow in a square driven cavity for Re= 100 

show a qualitative agreement (Figure 14(b)) with the results of References 42 and 46, and the 
pressure field shows a quantitative agreement with the results of References 42,46,48 at Re= 100. 
The fields w and the changes in p are concentrated near the upper corners. 

It must be mentioned that the numerical calculations of this method were absolutely stable 
while using the under-relaxation (28); so, no other strategies were necessary. This point is most 
important because in the alternative methods, FDM and FEM, some special strategies must be 
used to improve the stability of the numerical scheme in the recirculating flows (for instance, using 
an upwind scheme). 

The flow in a channel with sudden symmetric expansion 

In conclusion, the flow in a plane channel with sudden symmetric expansion will be considered. 
Half-height of the channel. before the expansion was h= 1/2 and after the expansion H =  1. The 
Reynolds number Re = l / v  was chosen equal to 46.6 to compare with the known data.47, 49 The 
boundary conditions for this problem have the following form: 

on the channel wall the no-slip conditions are 

u l = u z = o ,  Y=O, f = O ;  

on the axis symmetry of channel 

dul/an=O, u2=0,  Y = l ,  f = O ;  

in the narrow channel exit (i.e. at the place of sudden expansion) a parabolic profile of longitudinal 
velocity component 



568 M. M. GRIGOREV 

Re=l 

0.8 

x2 

0.6 

0.4 

Oei! OO i 0.2 0.4 0.8 0.8 1 

(4 X1 

Re=100 

0.8 

Xi? 

0.6 

0.4 

0.2 

O%.O 0.2 0.4 0.6 0.8 1 .o 
(b) XI 

Figure 14. The lines of constant vorticity: : (a) Re= 1;  (b) Re= 100 

where y is a co-ordinate measured from the symmetry axis, 

in the exit of the calculation domain 

du,/dn=du,/an=O, aY/an=O, p ’=O.  
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The mesh used in BEM was the same as in the calculations of the flow in the inlet section of 
parallel plates at Re = 200. The convergence of the solution for this problem was achieved in 210 
iterations using the usual convergence criterion. 

The vector velocity fields (Figure 16) demonstrate the recirculating region behind the step. The 
flow reattachment point is situated at x , / R e  = 0.060 and, according to the results of References 47 
and 49, the reattachment length is between 0.064 and 0.068. The minimum value of the stream 
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function at the recirculating region centre is Y,,, = -09405 (Figure 17) and, according to the data 
of References 47 and 49, from -0.0444 to -0.045. 

Figurc 18 shows the development of the streamwise velocity profiles. One can note that the 
character of the formation of velocity profiles is analogous to the results obtained by A g a r ~ a l . ~ ’  
Figure 19 shows the change of the velocities along the channel centreline. At x, /Re<0-06 the 
results conform well to the data of References 47 and 49, but downstream the disagreement 
increses because the length of the domain was chosen not long enough. 

The main centre of vorticity generation in this flow is the step edge (Figure 20). A rather good 
agreement is observed in the changes of the vorticity on the channel lower wall (Figure 21), 
though at x1 / R e  > 0.1 the value of vorticity according to BEM approaches the asymptotic value 
faster than for the calculated data of References 47 and 49. This is again connected with the choice 
of an inadequate length of the calculation domain. 

This paper does not give calculations for rather large channel lengths because of the limited 
computer capacity. The implementation of the program, composed on the basis of this method 
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proved to be efficient only while using relatively short cells. It was shown that the ratio of 
right-angled triangle cathetus should not be higher than four. The use of longer cells does not 
converge the solution. It surely means that the real flow pattern is masked by the longer constant 
cells. 

The pressure derivatives d p / d x z  exist essentially only in the short inlet section (Figure 22), the 
main pressure changes taking place only along the x1 co-ordinate. 

The pressure value along the channel length changes non-monotonically (Figure 23). At sudden 
channel expansion, first the pressure value increases and then having reached its maximum at 
x1 = 5 begins to decay according to the linear rule characteristic of the developed flow. 
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CONCLUSIONS 

The paper describes a new numerical boundary element method for the steady incompressible 
laminar flow calculation. It is based on the widely known SIMPLE alg~rithm,~’-’~ which has 
been used successfully together with the control volume method for both laminar and turbulent 
flow calculations in the last 20 years. The method devised by the author permits one to determine 
the pressure and velocity corrections from the known fields of the velocity divergence without 
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iterations. For the Bl E discretization, constant boundary elements and constant triangular cells 
were used. The values of the integrals along the BE and cells were determined analytically (see 
Appendix). Discrete BIE for the source points on the boundary of the calculation domain were 
reduced to a system of linear algebraic equations, which were solved by the Gauss elimination 
method. The values of the velocities ui and their derivatives du, /d{ ,  were found in an explicit form 
from the given values of ui, 8ui/8n on the boundary I-. 

To achieve convergence of the solution, under-relaxation for the convection terms was used. 
The numerical calculations have shown the stability of this scheme for the recirculating flows as 
well. Excellent approximation was achieved at S(r240 iterations for the Reynolds numbers from 
1 to 200. 
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The values of the vorticity and the stream function were found after obtaining the convergent 
solution for the values of the velocity derivatives d u i / d t l .  The algorithm of their foundation was 
also based on the BEM technique. 

The numerical calculation results for the following plane flows are presented: 

(a) in the inlet section of the parellel plates at Re = 20 and Re = 200; 
(b) in a square cavity with a driven upper lid at Re= 1 and Re= 100; 
(c) in a plane channel with sudden symmetric expansion at Re=46.6.  

A comparison of the results with the known data has shown the correctness of this numerical 
method. 

The numerical solution method described here is based on the BEM technique and is 
applicable to both two-dimensional and three-dimensional steady incompressible viscous flows 
because of the formulae and equations (1)-(28) are identical for these flows. To solve the 
three-dimensional problems, alterations should be made for the calculations of vorticity and 
stream function and the evaluation of the discrete BIE coefficients (see the Appendix). One must 
take into account that the fundamental solution of the Laplace equation for three-dimensional 
problem has the form 

1 
U* =- 

4nr ’ 

and the boundary elements and volume cells will be considered, for instance, as triangles and 
tetrahedrons, respectively. 

The proposed solution method is stable for calculating the separated and recirculating flows 
while using under-relaxation; so, no supplementary strategies are necessary (for instance, using an 
upwind scheme). 

It is shown that the proposed method is efficient only while relatively short cells are used (the 
ratio of right-angied triangle cathetus should not be higher than four). The use of longer cells 
introduces instability in the numerical solutions, that essentially limits the applications of this 
BEM technique to solve the flow in channels with rather large length-to-height ratio. 

This method seems to be developed for solving the unsteady viscous incompressible flows with 
the use of the fundamental solutions for unsteady diffusion equation. The use of this method to 
solve the incompressible turbulent flows is considerably limited because of the instability of this 
method at high Reynolds numbers. 

It must be mentioned that the presented method allows one to solve the problems for domains 
of complex configuration without additional difficulties. This point is most important because in 
FDM there are considerable difficulties in the solution of the viscous flows in domains with 
complex configurations. 

However, this method needs large computer storage for big arrays D&, @,,, of the N ,  x N ,  and 
2 N ,  x N, dimensions, respectively, and this limits significantly the use of this method on com- 
puters with relatively small storage. One of the ways to improve this method is to use the 
boundary elements and volume cells of a higher order together with the ‘subdomain’ method to 
reduce the computer consumption storage. 

APPENDIX 

For the two-dimensional domain the fundamental solution of the Laplace equation has the form 

1 1  
271 r 

u* =-ln - , 
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is the radius vector between the source and field points. All the integrals over the BEs and the cells 
have singularities at r+O and, so they are likely to be found analytically. 

The calculations of the contour integrals along the boundary elements are made according to 
the scheme given in Figure 24. The orthogonal co-ordinate system z1 I z2  is introduced, and it is 
strictly connected with the source point 4, and the co-ordinate axis z1 is orthogonal to the 
boundary element [ 1,2]. 

The orthogonals e l ,  e2 of the auxiliary co-ordinate system are determined, respectively, as 

The integral over the nth BE 

(39) 
1 

g(c)=j r ,  u*(x, ~ ) d T ( x ) = - - [ ~ $ ~ ) ( l n r ~ - l ) - z $ ~ ) ( l n r ~ -  2n 1)+h(cp2-cp1)1 

may be found analytically using the relations 

h r = -  h d v  
cos2 cp ’ 

z2 = h tan cp, dz2 =--- 

where z(,l)= h x tan cpl, z(,z)= h x tan cp2 are the co-ordinates of the tops of the boundary elements 
(1) and (2), respectively, in the related co-ordinate system. When the source point approaches the 
boundary node, we will have from (39) 

cos cp ’ 

G,,= lim g(c)=- 1-ln- , 
t-*L “-( 2z ?) 

and the coefficients Gym may be calculated directly from (39) on the condition that the tops of BEs 
(l) ,  (2) and the point E form the counterclockwise contour direction. Otherwise, new numeration 
of the tops to achieve the desired triangle numeration 12E is introduced. The same procedure is 
fulfilled by the way for calculating the rest of the contour integrals. 

Figure 24. The co-ordinate system for analytical calculation of contour integrals 
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One must take into account 
du* xr- t r  aq* nl (xi-ti)ni(xI-t[) 
at1 271r' ' a(1-271r2  71r4 

- 

for calculating the coefficients yem and figrn. From (20) the values of the integrals may be obtained: 

according to Figure 24. 
To check the perfectness of y& calculations, the relation 

Nh 

y g m n u = l  
j= 1 

may be used. Relation (42) can be obtained in the following way. As the formula 

au* au* 
X I  ax, 
-=-- 

is valid, on discretizing the boundary integral 

we obtain 

On the other hand, 

for the internal nodes c, = 1; so, (42) is valid. 
To check the perfectness of the coefficient St,, let us transform the integral 

and taking into account (44), we have 

So, the equality 

j =  1 

is valid for l = l , 2 ,  m = l , 2 , .  . . , N , .  
The value H, ,  for the singular boundary elements equals zero, as the identity 

(xi- t i )n i  = 0 

(43) 

(44) 
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is valid for the source point on BEs. While calculating H j m  ( j#rn)  and Hym, it is useful to note that 

So, taking into account that ni=el ir  eliezl=O and e l i e l l = l  from (40) and (46), we have 

To check the perfectness of the calculations of gjm and gym, one can use the relations 

j =  1 j= 1 

The calculation of the integrals Dkm by the cells does not present any special difficulties if the 
integral is offered as a sum (Figure 25), 

u*dR+ u* dR + u* dR, (47) 
1 f h E  .f%3E 

and separate singular integrals over f i 1 2 E ,  fi23E, R13E may be calculated by the scheme given in 
Figure 24. In this case the integral along any singular triangular cell has the form 

The joint use of (47) and (48) dependencies suits the calculation of the integrals by the singular 
and by the regular cells as well. It is also important that the signs before the integrals in (47) are 
established 'automatically' only if the top numeration in triangles while calculating (48) is done 
counterclockwise. The values of the coefficients DPm may be calculated analogously from (47) 
and (48). 

If we use the formula for the singular integral by the triangle cell then the values of the 
coefficients i3&, may be calculated from (47): 

Figure 25. The description of integral calculations along the cells 
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It must be mentioned that though the values of the regular integrals by the BE and the cells can 
be found numerically using Gauss and Hammer methods, re~pectively,~ it is still preferable to 
evaluate them by the analytical relations obtained above. 
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